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PROB LEMS 

Results obtainable using the theory of progressive waves of small amplitude and certain fundamental solutions 
relating to waves of finite height are investigated. The theoretical findings are compared with existing experi- 
mental  data. It is established that the best agreement between the theoretical and experimental profiles of a 
plane wave is achieved with constructions based on Kozhevnikov's [1] graphs and the equations of motion in 
the second approximation with respect to the wave height in the form proposed by Mich [2]. The limits within 
which it is expedient to use the theoretical formulas of the theory of small-arnpli tude waves and the theory of 

the second approximation with respect to the wave height are found and proved for the particle velocity, excess 

pressure, energy flux, and the energy of a single wave. 

In solving practical problems connected with wave motion at the surface of a heavy incompressible liquid and its 

effect on obstacles, it is customary to use the theory of potential waves of infinitely small  amplitude. For this form of 
motiori, in the case of progressive waves in water of finite depth, the projections of the velocity on the coordinate axes 

and the variable part of the local pressure are given by the formulas [3, 4]: 

ah ch k (H + z)  cos (zt - -  k~), 
v x - -  2 sh kH 

~h s h k ( H + z )  s in (6 t - -kx) ,  
vz - -  2 sh kH 

pgh e h k ( H + z )  
P - -  2 ch kH cos (6t--  kx), 

(1) 

(2) 

(S) 

where h is the height of the wave, X is the wavelength, r is the period of the wave, H is the depth of the water, p is the 

density of the water, g is the acceleration of gravity, z the vertical coordinate, taken with a minus sign below the static 

level,  and x the horizontal coordinate at the level of the static horizon. 

�9 The linear theory of small-ampli tude waves is simple and very convenient for practical purposes. However, in view 

of the assumptions made, it appears necessary to make a more accurate determination of its limits of applicabil i ty and at 

the same t ime to show what solutions are to be preferred when the theory fails to give the required accuracy. 

It is known that one of the principal indicators of correspondence between wave theory and the phenomenon in ques- 
tion is good agreement between the theoretical and the actual profiles of the agitated surface. In order to make such a 
comparison, in a wave tank measuring 40 X 1.0 • 1.2 m with glazed side walls we performed a series of experiments to 
record wave profiles on still and motion-picture f i lm.  In addition, we constructed profiles of waves of trochoidal form and 

small amplitude from Kozhevnikov's data and from the following relations: 

1. Stokes [5]: 

h kh 2 ch kH 
~ l o = ~ c o s k x - -  t6 sh akH (ch2kH@2) cos2kx. (4) 

2. Nekrasov [6]: 

h 2x~H h" 
x ~ - -  - ~ - 0 - - - ~ -  cth ~ sin 0, z = - ~ -  cos0. (5) 

3. Mich [2]: 

where 70 

x = x o + ~  shkH sin (a t - - kxo) - -  t6 sh ~kH L I -  2 sh 2kH - ] 

h sh k (H -~ zo) kh 2 sh 2k (H -b zo) [ 3 cos 2 (r ~ kxo)] 
~----zo+ 2 s h k H  c o s ( 6 t - - k x o ) - { - t 6  sh '~kH Llnt  2 s h i k H  " J 

(6) 

is the elevation of the agitated surface above the static level ,  and x and z are the wave profile equations. 



Kozhevnikov [1] constructed potential  wave 
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profiles and determined the characterist ics of wave motion by the method 
of e lectrohydrodynamic analogies.  

An examinat ion of Eqs. (5) and (6) shows that Nekrasov's theory is 
l inear,  while Mich takes into account terms up to the  second approxima- 
tion with respect to the height of the wave. Herein lies the principal 
difference between them. Nekrasov assumed that his theory was valid 
only for very shallow waves h/X -< 1/88. 

By way of example ,  Fig. 1 shows the exper imenta l  and theoret ical  
wave profiles f o r h =  4 . 2 5 c m ,  >,= 5 0 c m ,  H= 9.5 cm, where the 
curves are numbered: 1 )exper imenta l ;  2)Kozhevnikov;  8 )Mich ;  4) 
l inear theory; 5) Nekrasov; 6) Stokes; and 7) t rochoidal  theory. 

In this and other cases it was found that the best approximation to 
the exper imenta l  data is given by constructions based on Kozhevnikov's 
graphs and computations based on Mich's relations.  Unfortunately, 
Kozhevnikov does not present formulas for the part icle veloci ty  and 
excess pressure corresponding to the wave profiles he obtained.  Accord 
ingly,  for our purposes we shall  use the equations of motion in the form 

Fig. 1. 

proposed by Mich. 

syna [8] for determining the wave pressure on cer ta in  types of hydroengineering structures, 

The above-ment ioned  relations have the following form: 

~h e h k ( H + z )  3k~h 2 c h 2 k ( H q - z )  
Vx = ~ sh kH - cos (at - -  kx) ~ 16 sh 4 kH 

~h sh k (H + z) 3kah~ sh 2k (H -b z) 
Yz = - -  2 sh k H  s in (~t  - -  kx) - - .  t6  sh 4 kH 

These equations have already been used by D. D. Lappo [7], V. V. Khaperskii,  and G. G. Mete l i t -  

p =  

cos 2 (~t - -  kx), 

sin 2 ( z t  - -  k x ) ,  

pgh eh k (H q-- z) apgkh= bh kH eh 2k (H q- z) 
2 ch kH - cos (~t - - / ~ )  q- t 6 sh ~ k--H cos 2 (~t - -  kx) - -  

pgkh 2 t h k H  c h 2 k ( H + z )  pgkh~ t h k H  pgkh ~ t h k H  
t6 sh 2kH t6 sh 2 k H c ~  q- t6 s h  2kH " 

(7) 

(a) 

(9) 

These equations hold true when for h/X < 0.074 the ratio H/X -- 0. 182, while for H/X _> 0 .146there  are norestr ic-  
tions on the steepness of the waves. Formula (9) above was obtained by Biesel [9], using the existing Mich solution, wri t-  
ten in a somewhat different form. 

Considering the second terms on the right sides of Eqs. (7), (8) and 
comparing the la t ter  with expressions (1), (2), we see that the numerica l  

values of the par t ic le  ve loc i ty ,  averaged over the period of the wave, as 
obtained from the formulas of the first and second approximations,  are the 

same.  On the other hand, for individual  moments with respect to the phase 

of the wave motion the ca lcu la ted  values of the part icle  veloci ty  may be 
considerably different,  depending on whether formulas (1) and (2) or (7) 
and (8) are used for the purpose. 

This is shown in Fig.  2, which for a comple te  period gives the results 

of computations (of the veloci t ies  in cm/sec  and the pressure p in g / c m  2) 
based on formulas (1)-(8) and (7)-(9) for z = 0, h = 12.1 cm, X = 245 cm,  

H = 36 cm. The individual  graphs show: a) ver t ica l  projections of the par-  
t i c l e  veloci ty;  b) horizontal  projections of the par t ic le  veloci ty;  c) orbi tal  

veloci t ies ;  d) excess wave pressure; 1) second approximation;  2) l inear  
theory; 3) corrections to second approximat ion.  In a l l  the graphs, and es- 
pec ia l ly  (c),  it is c lear  that the second-approximat ion  terms have a consid- 

0 35 " 

-20 25 

G c m / s e c  d) 
b)/!  # ~ , i i - ~  

0 

7 "ezl "1 " ~  z "42zt  

-a0 

Fig.  2. 

erable  influence in the individual  phases of the period. It is interesting to consider the effect of the re la t ive  depth of the 

water on the terms of second approximation with respect to wave height .  We shall  do this in r e l a t i o n t o t h e  averaged va l -  
ues for the phase of passage of the wave crest, although, as noted above,  this averaging leads to a certain drawing to-  

gether of the results obtained from the theories of waves of smal l  ampli tude and f ini te  height.  We shall denote averaged 

values with respect to the depth and the period of the wave by means of brackets ,  thus: ~ v x ~ ,  the auxi l iary subscript _ 

indicat ing averaging over the period only.  From Eqs. (7) - (9) ,  averaging v x, v z, and p with respect to the depth,  for the 
first quarter period of the fundamental  wave and the first quarter period of the superimposed wave, we get for the wave 

crest:  
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+ 3h, ch k .  < ~ >  . . . .  ., ( lO )  
~ H  . . . .  4 ~  sh, kS '  ' 

/ . 2 q ~  

1.00~10 i 0.20 

h~, (ch kH - -  t) .3h 2 (oh 2 k H "  1') 
<vz> ~ - -  :r sh kH 8"~H sh a kH ' (11) 

pgh th kH 3pgh ~ pgh 2 pgkh 2 pgkh 'z 
<P>--'-=" ~kH 2- 8nHsh~kH - - ~ 6 - / T - - 4 ~ s h 2 k H 2 -  8 s h 2 k l l  (12) 

In (10) - (12)  the first terms on the right sides a reequa l  to the average expressions for the 
wave crest obtained from the theory of waves of smal l  ampl i tude,  while the fol lowingterms in-  
clude the correction for computat ion to the second approximation with respect to the wave 
height.  Values of the addi t ional  terms for <vz> from (11) are shown in Fig. 3, where <v(1)> is 
the first term on the right side of Eq. (11).. On the figure we have plotted the theoret ica l  points, 
whose scatter characterizes the  effect of the steepness of the wave. It is c lear  that this effect is 
smal l .  Thus, it  is evidently undesirable to allow for this effect by constructing supplementary  
curves. Analogous curves may be constructed for <vx>and <p>. 

It has been established that for a large re la t ive  depth the addit ional  terms in (10)o(12) 
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Fig. 3. 

have low values. In pract ice they can be neglected if H/X > 0.20, 
since in this case the discrepancy between computations based on 
the formulas of the first and second approximations is less than 10%. 

The theore t ica l  and exper imenta l  data on the distribution with 
respect to depth of the par t ic le  veloci ty  in a progressive wave are 
shown in Fig. 4 for the conditions indicated in the tab le .  

In Fig. 4 the depth of the water below the s tat ic  level ,  marked V 0 . 0 ,  is plotted along the ordinate axis, and the 
corresponding orbital  veloci ty  along the axis of abscissas, the curves 
being constructed for the following conditions: 1) exper imenta l ,  
averaged over the whole period; 2) according to the theory of waves 
of smal l  ampli tude or f inite ampl i tude  and averaged with respect to 
the values for the whole phase (which, as a l ready noted, leads to the 
same results). Curves 1 and 2 l ie  close together,  which confirms the 
satisfactory agreement  over the entire depth of the exper imenta l  and 
theore t ica l  data averaged over the period of the wave. 
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The situation is somewhat different if we consider the distribution with respect to depth of the t ime-ave raged  orbital  
veloci t ies  for the crest an d trough separate ly .  In this case, according to the theory of sma l l - ampl i tude  waves, in view of 
the influence of the terms of the second approximation,  the ve loc i ty  changes value in moving around the orbit. For exam- 
ple, according to Mich's solution of the second approximation for the wave crest (Fig. 4, curve 3) we have:  

<vxD = ?h  ch k (H 2- z) ~_ 3koch ~ ch 2k (H 2- z) (13) 
" g sh kH 8g sh 4 kH ' 

<Vz~ ) = r sh k (H 2- z) 3kzh ~ sh'2k (H 2- z) (14) 
sh kH 8g sh a kH ' 

and, correspondingly, for the trough (curve 4): 

~h ch k (H -t- z) 3k~h ~ ch 2k (H 2- z) 
sh kH 8g sh 4 kH 

3k~h 2 s h 2 k ( H  2- z) (15) 6h sh k (g  2- z). 2- 
<Vzz> ~ - _  _ _  sh kH 8• sh 4 kH 

The difference in the values of the orbital  veloci t ies  at the crest and in the trough of the wave is part icular ly marked 
when H/X -< 0.2,  which is c lear ly  discernible on comparing curves 3 and 4 (Fig.  4). 

It is also useful to compare  the formulas of the first and second approximations in respect to energy. Fo rexample ,  in 
solving many problems in the wave motion of a liquid it is necessary to determine  the energy transported by a progressive 
wave. For these purposes it is customary to use a formula obtained from the theory of waves of inf ini tely sma l l amp l i t ude .  
This has the form [10, 11]; 
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I.V c - -  pgh~c ( t  @ 4aIH 
s sh (4~tI / s ] 

where c is the rate of propagation of the wave. Taking into account the second approximation,  the energy transport equa-  

tion for a progressive wave can be obtained as foltows. As is known from the basic theory of hydrodynamics,  

W c = i  dt ; PVxdz . (17) 
0 - - H  

Ilence, using Eqs. (7) and (9), after certain transformations we get:  

4alt \ pzah 3 F 2r~H ( 2 ~ )  2uH1 W ~ = pgh~c {1 + + x 
t6 \ ) ~ s h i 4 a H / s  48nksh~i2uH/K) L 2 c h 2 ~  3 " 0 " s h = - -  - -  s h 2 - - ~ - ]  (18) 

In (18) the second term on the right side is a consequence of taking into account the second approximation with respect to 
the height of the wave. 

Only for H/X = 0.2 are the results of computations based on formulas (16) and (18) very close, since in this case tbe 
addit ional  term in (18) is  negl igibly small .  When H/X > 0.2,  t heda t a  for (16) exceed the  values for (18). For example ,  
for H/X >- 0 .4  the discrepancy is 12~ When H/X < 0.2 the opposite effect is observed, and the energy flux given by 

(18) becomes dis tmct ly  greater than that given by (16). For H/X = 0.145 the increase is a lready 10~ which is appreciable .  

At the same t ime ,  it  is interesting to compare the wave energy transfer with the to ta l  energy of a single wave. The 

kinet ic  energy for a progressive wave [1 0, 11] 
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For the form of wave motion in question (second approximation with respect to height of wave) the veloci ty  potent ial  

6h ch k (H + z) 3ah 2 ch 2k (H + z) sin 2 (at - -  kx). (20) 
c p = - -  2k s h k H  sin ( a t - - k x ) - -  32 sh 4kH 

Substituting (20) in (19) for the entire depth of the water we get: 

pgh2~ pg~h 4 eh 2kH (21) 
- -  t6 q- 28.5% sh 6kH " 

The potent ia l  energy of a single wave 
k 

V V = - ~ - ~  z2dx, 

0 
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where for the case in question 

h kh' sh 2kH i t - l -  3cos 2 (at - -  kxo) 
z = 7~- cos (at - -  kxo) --]- 16 sh ~ kH 2sh 2 kH (23) 

In (23) x 0 is the horizontal coordinate of the water particles in the regt state, and not the horizontal coordinate of the wave 

profile, but for integration within the assumed limits this does not affect the result obtained. 

Substituting (23) in (22), we have 

pgh~L pg~h a pgg2h4 cth 2 kH (24) 
V - -  16 - t - ~ c t h ~ k H - t -  t4.25L sh ~kH ' 

Whence for the case in question the to ta l  energy of a single wave 

pgh2L p g ~ h '  / c t h  ~ kH sh 2 kH Jr- 3ch ~ kH~ (25) 
E -  8 + - - Z - - - \  32 + 2-~--~-h6~-g ] 

The first term on the right side of (25) is equal  to the energy of a single wave from the theory of waves of smal l  a m -  
pli tude.  Hence, for waves of f inite height of the form in question the energy contained between two vert ical  lines a dis-  
tance }, apart  is somewhat greater than for waves of inf ini te ly  smal l  ampl i tude .  

The results of computations based on (25) give us reason to assume that for the above-ment ioned form of waves of 
f ini te  ampl i tude  the corrections for the increase in energy as compared with waves of smal l  height has a marked effect 
only when steep waves are propagated at a smal l  re la t ive  depth.  In these conditions the difference in the energy of a single 
wave may be as much as 18%. If the wave is shallow, then even at a smal l  re la t ive  depth the second term on the right 
side of (25) is insignificant .  
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